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PseudoRandom Generators

Seed:

Output:

(x1, x2, . . . , xn) ∈ Fn
2

(y1, y2, . . . , yn, yn+1, . . . , ym) ∈ Fn
2

PRG

(yi)i≤m should be indistinguishable from a random string;

it is hard to recover (xi)i≤n using the knowledge of (yi)i≤m.
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Stretch and locality

xn

x1
x2
x3

...

xi

...

yj+2

yj
yj+1

...

...

m = nsd= 3
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Theoretical applications

Semi Secure computation with constant computational overhead [Ishai et al.
STOC 2018, Applebaum et al. CRYPTO 2017]

MPC-friendly primitives [Albrecht et al. EC 2015, Canteaut et al. FSE 2016,
Méaux et al. EC 2016, Grassi et al. ACM-CCS 2016]

Indistinguishability Obfuscation [Sahai and Waters STOC 2014, Lin and
Tessaro CRYPTO 2017]

Cryptographic Capsules [Boyle et al. ACN-CCS 2017]
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Description of Goldreich’s PRG

Seed (x1, . . . , xn)

σi
1

σi
2

σi
d−1

σi
d

P(xσi
1
, . . . , xσi

d
) (yi)1≤i≤m

m = ns, s is the stretch.
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Parameters

Stretch s > 1

?

Subsets (σi)i≤1

?

Boolean function (predicate) P

?

Locality d

?
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Subsets

The subsets should be sufficiently expanding: for some k, every k subsets should
cover k+Ω(n) elements of {1, . . . , n}.

Ok if they are chosen uniformly random
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Generic sub-exponential seed recovery

Create a list of all possible values for (2ε) ∗ n variables.

A value x′ of the list can agree on (1/2+ ε) ∗ n output bits.

Final complexity:

2n
1−(s−1/2d)

s = 1.45 and d = 5 ⇒ 2n
0.955
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Predicate criteria

degree [Goldreich 2000]

rational degree (algebraic immunity) [Applebaum and Lovett STOC 2016]

AI(P) > s

resilience [O’Donnelland Witmer CCC 2014, Applebaum 2015]

res(P) > 2s

9 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

locality

degree

resilience

Siegenthaler

 ⇒ d ≥ 5

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5
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Our results

A new subexponential-time attack in 2O(n
2−s).

Linearization and Gröbner-based attacks.

Generalization of the subexponential attack to all predicates.

locality and stretch are linked to the size of the seed.
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Cryptanalysis of FLIP [Duval, Lallemand, Rotella CRYPTO 2016]

Key Register KPRNG

Permutation
Generator

Pi

F

pi

ci

zi

F(x) =x1 + x2 + · · ·+ xk1
+ xk1+1xk1+2 + · · ·+ xk2−1xk2
+ xk3 + xk3+1xk3+2 + · · ·+ xn−14 · · · xn−1xn
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FLIP vs Goldreich’s PRG

FLIP: overdetermined

Goldreich’s PRG: underdetermined

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5
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Collect linear equations

x1 + x4 + x8 + x9x11 = 1

x14 + x5 + x7 + x1x4 = 0

x13 + x10 + x3 + x11x9 = 1

We get the following linear equation:

x1 + x4 + x8 + x13 + x10 + x3 = 0

number of collisions c ∈ O(n2(s−1))
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Guessing phase

Choose the ℓ variables that appear the most in the quadratic terms, such
that you get n− c− ℓ linear equations.

For all possible values of the ℓ bits:

Solve the correponding linear system of n linear equations.
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Analysis and complexity

Complexity: ℓ < n2−s → O
(
n32n

2−s
)

Conjectured secure up to s < 1.5.

The equations might be linearly dependent (almost never the case).

This leads to a strong distinguisher and allows to determine if the Guess is
right or wrong.

If the equations aren’t linearly dependent, then we solve a full rank linear
system of size n.
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Table: Average number of collisions

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771
s = 1.4 83 145 254 442 773
s = 1.3 28 42 64 97 147

Table: Theoretical number of
guesses (worst case)

n 256 512 1024 2048 4096

s = 1.45 4 7 11 18 27
s = 1.4 9 15 23 37 58
s = 1.3 20 34 56 94 156

Table: Experimental number of
guesses (average)

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21
s = 1.4 6 11 17 27 44
s = 1.3 13 23 39 65 110

Table: Complexity of our attack.

512 1024 2048 4096

< 280 1.120 1.215 1.296 1.361
< 2128 1.048 1.135 1.222 1.295
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Complexity

29 210 211 212 213 214
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
PR

G

above: < 80 bits security
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Collecting equations of degree 2

xi1 + xi2 + xi3 + xi4xi5 = yi (1)

xj1 + xj2 + xj3 + xj4xj5 = yj (2)

using (1): xi4xi1+xi4xi2+xi4xi3+xi4xi5 =xi4yi

if xi4xi5 = xj4xj5 : xkyi+xkyj =xkxi1+xkxi2+xkxi3+xkxj1+xkxj2+xkxj3
if xi4 = xj4 : xj5×(1)+xi5×(2)
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Solving the system

Q B = y

Nvar

Neq
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Solving the system

Q = B + y
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Solving the system

Λ

B = y
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Experimental results

28 29 210 211 212 213 214
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Results on P5
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Guess and determine
Degree-two linearization
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General sub-exponential time attack

P = x1 + x2 + · · ·+ xℓ + f(xℓ+1, . . . , xd)

k = d− ℓ ⇒

2n
k−s
k−1
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r-bit fixing Algebraic Immunity [MJSC, EC 2016]

min
(b,i)

(AI(f(b,i)))

where bits at positions i are fixed.

For example, if f(x1, x2, x3, x4, x5) = x1 + x2x3x4 + x5, then

f(1,2),(0,1) = x3x4 + x5
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Improvement

Fixing j bits on a predicate of the form

P = x1 + x2 + · · ·+ xℓ + f(xℓ+1, . . . , xd)

gives equations of degree smaller than⌈
k− j

2

⌉
+ 1

If the stretch is ”big enough”, we can improve the previous generic attack using
bounds on r-bit fixing algebraic immunity.
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Application to XOR-MAJ predicates

Fix enough bits to 0 (or 1).

Recover linear equations.

O

(
2n

1− s−1
k/2+1

)
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Polynomial Attack (AL theorem improvement)

Let Ne be the dimension of the vectorspace of annihilators of degree e, then if

s ≥ e− log(Ne)

log(n))

then there exists a polynomial-time algorithm that breaks the PRG.
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Conclusion

First concrete parameters given.

Symmetric Cryptanalysis can be applied to theoretical constructions.

Several techniques that do not capture the same phenomenon.

If s is close to 1.5, then the seed size has to be very big.

New theorems and criteria on predicates.
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Perspectives

Link between expander graphs, first attack (Guess-and-Determine) and
second attack (Gröbner).

Capture the Gröbner success phenomenon.

Find best predicate ?
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Thank You !
Questions ?
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