
On the Concrete Security of Goldreich’s PRG

Yann Rotella
Joint work with Geoffroy Couteau, Aurélien Dupin,

Pierrick Méaux and Mélissa Rossi

January 31, 2019



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

PseudoRandom Generators

Seed:

Output:

(x1, x2, . . . , xn) ∈ Fn
2

(y1, y2, . . . , yn, yn+1, . . . , ym) ∈ Fn
2

PRG

(yi)i≤m should be indistinguishable from a random string;

it is hard to recover (xi)i≤n using the knowledge of (yi)i≤m.

1 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Structure of this Talk

1 Introduction

2 A subexponential-time attack

3 Algebraic cryptanalysis

4 Generalization on all predicates

5 Conclusion

2 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Stretch and locality

xn

x1
x2
x3

...

xi

...

yj+2

yj
yj+1

...

...

m = nsd= 3

3 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Theoretical applications

Semi Secure computation with constant computational overhead [Ishai et al.
STOC 2018, Applebaum et al. CRYPTO 2017]

MPC-friendly primitives [Albrecht et al. EC 2015, Canteaut et al. FSE 2016,
Méaux et al. EC 2016, Grassi et al. ACM-CCS 2016]

Indistinguishability Obfuscation [Sahai and Waters STOC 2014, Lin and
Tessaro CRYPTO 2017]

Cryptographic Capsules [Boyle et al. ACN-CCS 2017]

4 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Description of Goldreich’s PRG

Seed (x1, . . . , xn)

σi
1

σi
2

σi
d−1

σi
d

P(xσi
1
, . . . , xσi

d
) (yi)1≤i≤m

m = ns, s is the stretch.

5 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Parameters

Stretch s > 1

?

Subsets (σi)i≤1

?

Boolean function (predicate) P

?

Locality d

?

6 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Parameters

Stretch s > 1 ?

Subsets (σi)i≤1 ?

Boolean function (predicate) P ?

Locality d ?

6 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Subsets

The subsets should be sufficiently expanding: for some k, every k subsets should
cover k+Ω(n) elements of {1, . . . , n}.

Ok if they are chosen uniformly random

7 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Subsets

The subsets should be sufficiently expanding: for some k, every k subsets should
cover k+Ω(n) elements of {1, . . . , n}.

Ok if they are chosen uniformly random

7 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Generic sub-exponential seed recovery

Create a list of all possible values for (2ε) ∗ n variables.

A value x′ of the list can agree on (1/2+ ε) ∗ n output bits.

Final complexity:

2n
1−(s−1/2d)

s = 1.45 and d = 5 ⇒ 2n
0.955

8 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Generic sub-exponential seed recovery

Create a list of all possible values for (2ε) ∗ n variables.

A value x′ of the list can agree on (1/2+ ε) ∗ n output bits.

Final complexity:

2n
1−(s−1/2d)

s = 1.45 and d = 5 ⇒ 2n
0.955

8 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Generic sub-exponential seed recovery

Create a list of all possible values for (2ε) ∗ n variables.

A value x′ of the list can agree on (1/2+ ε) ∗ n output bits.

Final complexity:

2n
1−(s−1/2d)

s = 1.45 and d = 5 ⇒ 2n
0.955

8 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Generic sub-exponential seed recovery

Create a list of all possible values for (2ε) ∗ n variables.

A value x′ of the list can agree on (1/2+ ε) ∗ n output bits.

Final complexity:

2n
1−(s−1/2d)

s = 1.45 and d = 5 ⇒ 2n
0.955

8 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Predicate criteria

degree [Goldreich 2000]

rational degree (algebraic immunity) [Applebaum and Lovett STOC 2016]

AI(P) > s

resilience [O’Donnelland Witmer CCC 2014, Applebaum 2015]

res(P) > 2s

9 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

locality

degree

resilience

Siegenthaler

 ⇒ d ≥ 5

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5

10 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

locality

degree

resilience

Siegenthaler

 ⇒ d ≥ 5

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5

10 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Our results

A new subexponential-time attack in 2O(n
2−s).

Linearization and Gröbner-based attacks.

Generalization of the subexponential attack to all predicates.

locality and stretch are linked to the size of the seed.

11 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Our results

A new subexponential-time attack in 2O(n
2−s).

Linearization and Gröbner-based attacks.

Generalization of the subexponential attack to all predicates.

locality and stretch are linked to the size of the seed.

11 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Our results

A new subexponential-time attack in 2O(n
2−s).

Linearization and Gröbner-based attacks.

Generalization of the subexponential attack to all predicates.

locality and stretch are linked to the size of the seed.

11 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Our results

A new subexponential-time attack in 2O(n
2−s).

Linearization and Gröbner-based attacks.

Generalization of the subexponential attack to all predicates.

locality and stretch are linked to the size of the seed.

11 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Plan of this Section

1 Introduction

2 A subexponential-time attack

3 Algebraic cryptanalysis

4 Generalization on all predicates

5 Conclusion

12 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Cryptanalysis of FLIP [Duval, Lallemand, Rotella CRYPTO 2016]

Key Register KPRNG

Permutation
Generator

Pi

F

pi

ci

zi

F(x) =x1 + x2 + · · ·+ xk1
+ xk1+1xk1+2 + · · ·+ xk2−1xk2
+ xk3 + xk3+1xk3+2 + · · ·+ xn−14 · · · xn−1xn

13 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

FLIP vs Goldreich’s PRG

FLIP: overdetermined

Goldreich’s PRG: underdetermined

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5

14 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Collect linear equations

x1 + x4 + x8 + x9x11 = 1

x14 + x5 + x7 + x1x4 = 0

x13 + x10 + x3 + x11x9 = 1

We get the following linear equation:

x1 + x4 + x8 + x13 + x10 + x3 = 0

number of collisions c ∈ O(n2(s−1))

15 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Collect linear equations

x1 + x4 + x8 + x9x11 = 1

x14 + x5 + x7 + x1x4 = 0

x13 + x10 + x3 + x11x9 = 1

We get the following linear equation:

x1 + x4 + x8 + x13 + x10 + x3 = 0

number of collisions c ∈ O(n2(s−1))

15 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Collect linear equations

x1 + x4 + x8 + x9x11 = 1

x14 + x5 + x7 + x1x4 = 0

x13 + x10 + x3 + x11x9 = 1

We get the following linear equation:

x1 + x4 + x8 + x13 + x10 + x3 = 0

number of collisions c ∈ O(n2(s−1))

15 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Guessing phase

Choose the ℓ variables that appear the most in the quadratic terms, such
that you get n− c− ℓ linear equations.

For all possible values of the ℓ bits:

Solve the correponding linear system of n linear equations.

16 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Guessing phase

Choose the ℓ variables that appear the most in the quadratic terms, such
that you get n− c− ℓ linear equations.

For all possible values of the ℓ bits:

Solve the correponding linear system of n linear equations.

16 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Guessing phase

Choose the ℓ variables that appear the most in the quadratic terms, such
that you get n− c− ℓ linear equations.

For all possible values of the ℓ bits:

Solve the correponding linear system of n linear equations.

16 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Analysis and complexity

Complexity: ℓ < n2−s → O
(
n32n

2−s
)

Conjectured secure up to s < 1.5.

The equations might be linearly dependent (almost never the case).

This leads to a strong distinguisher and allows to determine if the Guess is
right or wrong.

If the equations aren’t linearly dependent, then we solve a full rank linear
system of size n.

17 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Analysis and complexity

Complexity: ℓ < n2−s → O
(
n32n

2−s
)

Conjectured secure up to s < 1.5.

The equations might be linearly dependent (almost never the case).

This leads to a strong distinguisher and allows to determine if the Guess is
right or wrong.

If the equations aren’t linearly dependent, then we solve a full rank linear
system of size n.

17 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Analysis and complexity

Complexity: ℓ < n2−s → O
(
n32n

2−s
)

Conjectured secure up to s < 1.5.

The equations might be linearly dependent (almost never the case).

This leads to a strong distinguisher and allows to determine if the Guess is
right or wrong.

If the equations aren’t linearly dependent, then we solve a full rank linear
system of size n.

17 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Table: Average number of collisions

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771
s = 1.4 83 145 254 442 773
s = 1.3 28 42 64 97 147

Table: Theoretical number of
guesses (worst case)

n 256 512 1024 2048 4096

s = 1.45 4 7 11 18 27
s = 1.4 9 15 23 37 58
s = 1.3 20 34 56 94 156

Table: Experimental number of
guesses (average)

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21
s = 1.4 6 11 17 27 44
s = 1.3 13 23 39 65 110

Table: Complexity of our attack.

512 1024 2048 4096

< 280 1.120 1.215 1.296 1.361
< 2128 1.048 1.135 1.222 1.295

18 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Complexity

29 210 211 212 213 214
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
PR

G

above: < 80 bits security

19 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Plan of this Section

1 Introduction

2 A subexponential-time attack

3 Algebraic cryptanalysis

4 Generalization on all predicates

5 Conclusion

20 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Collecting equations of degree 2

xi1 + xi2 + xi3 + xi4xi5 = yi (1)

xj1 + xj2 + xj3 + xj4xj5 = yj (2)

using (1): xi4xi1+xi4xi2+xi4xi3+xi4xi5 =xi4yi

if xi4xi5 = xj4xj5 : xkyi+xkyj =xkxi1+xkxi2+xkxi3+xkxj1+xkxj2+xkxj3
if xi4 = xj4 : xj5×(1)+xi5×(2)

21 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Solving the system

Q B = y

Nvar

Neq

22 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Solving the system

Q = B + y

23 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Solving the system

Λ

B = y

24 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Experimental results

28 29 210 211 212 213 214
1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
PR

G

above : conjectured polynomialy broken

25 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Results on P5

29 210 211 212 213 214

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
PR

G

Guess and determine
Degree-two linearization

26 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Plan of this Section

1 Introduction

2 A subexponential-time attack

3 Algebraic cryptanalysis

4 Generalization on all predicates

5 Conclusion

27 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

General sub-exponential time attack

P = x1 + x2 + · · ·+ xℓ + f(xℓ+1, . . . , xd)

k = d− ℓ ⇒

2n
k−s
k−1

28 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

r-bit fixing Algebraic Immunity [MJSC, EC 2016]

min
(b,i)

(AI(f(b,i)))

where bits at positions i are fixed.

For example, if f(x1, x2, x3, x4, x5) = x1 + x2x3x4 + x5, then

f(1,2),(0,1) = x3x4 + x5

29 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Improvement

Fixing j bits on a predicate of the form

P = x1 + x2 + · · ·+ xℓ + f(xℓ+1, . . . , xd)

gives equations of degree smaller than⌈
k− j

2

⌉
+ 1

If the stretch is ”big enough”, we can improve the previous generic attack using
bounds on r-bit fixing algebraic immunity.

30 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Improvement

Fixing j bits on a predicate of the form

P = x1 + x2 + · · ·+ xℓ + f(xℓ+1, . . . , xd)

gives equations of degree smaller than⌈
k− j

2

⌉
+ 1

If the stretch is ”big enough”, we can improve the previous generic attack using
bounds on r-bit fixing algebraic immunity.

30 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Application to XOR-MAJ predicates

Fix enough bits to 0 (or 1).

Recover linear equations.

O

(
2n

1− s−1
k/2+1

)

31 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Polynomial Attack (AL theorem improvement)

Let Ne be the dimension of the vectorspace of annihilators of degree e, then if

s ≥ e− log(Ne)

log(n))

then there exists a polynomial-time algorithm that breaks the PRG.

32 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Plan of this Section

1 Introduction

2 A subexponential-time attack

3 Algebraic cryptanalysis

4 Generalization on all predicates

5 Conclusion

33 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Conclusion

First concrete parameters given.

Symmetric Cryptanalysis can be applied to theoretical constructions.

Several techniques that do not capture the same phenomenon.

If s is close to 1.5, then the seed size has to be very big.

New theorems and criteria on predicates.

34 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Perspectives

Link between expander graphs, first attack (Guess-and-Determine) and
second attack (Gröbner).

Capture the Gröbner success phenomenon.

Find best predicate ?

35 / 36



Introduction
A subexponential-time attack

Algebraic cryptanalysis
Generalization on all predicates

Conclusion

Thank You !
Questions ?

36 / 36


	Introduction
	A subexponential-time attack
	Algebraic cryptanalysis
	Generalization on all predicates
	Conclusion

