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BASICS

1. Information is valuable.

2. Malicious people exist.

3. We need ciphers.

4. We can’t prove that a cipher is secure.

We do cryptanalysis
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OVERVIEW OF CONTRIBUTIONS

Pyjamask-96 [ToSC:DRS20]

GEA 1/2 [EC:BDLLRRRS21]

Keccak [ToSC:HNR21]

Panther [AfC:BHR22]

Troïka [SAC:BMR22]

Compression functions [C:FRD23]

Duplex-based modes [EC:GHKR23]

Subterranean 2.0 [ToSC:DMMR20]

LwPR [C:HMMRSU23]

Transistor [BBBBCLPPRR]

Cryptanalysis of primitives Designs

Cryptanalysis of modes
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OUTLINE

I Cryptanalysis with Algebraic Techniques
1 GEA-1/2
2 Subterranean 2.0
3 Pyjamask-96

II Cryptanalysis of Modes
1 Duplex-based modes
2 Keyed compression functions

III Conclusion

3 / 44



CRYPTANALYSIS WITH ALGEBRAIC TECHNIQUES

Cryptanalysis of the GPRS Encryption Algorithms
GEA-1 and GEA-2

Beierle, Derbez, Leander, Leurent, Raddum, R,
Rupprecht and Stennes

EUROCRYPT 2023
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GEA-1 : CONTEXT (BEFORE 2020)

▶ Proprietary stream cipher, designed by ETSI in 1998

▶ GPRS (General Packet Radio Service)

▶ No public specification available

▶ Reverse engineered (partly) by Nohl and Melette (2011)
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GEA-1 : INITIALISATION

S, 225 times :

. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

3 12 22 38 42 55 63

We call s the secret value contained in S.

6 / 44



GEA-1 : INITIALISATION

S, 225 times :

. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

3 12 22 38 42 55 63

We call s the secret value contained in S.

6 / 44



GEA-1 : STRUCTURE

s ∈ F64
2 , 64 initialisation clocks :

A←s0s1 · · ·s63

B←s16s17 · · ·s15

C←s32s33 · · ·s31
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GEA-1 : OBSERVATION

The relation between S and A, B and C is linear.

∃ MA ∈M (31×64), MB ∈M (32×64), MC ∈M (33×64) such that

α = MAs

β = MBs

γ = MCs

dim(ker(MA)∩ ker(MC)) = 24
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GEA-1 : ATTACK

F64
2 = (ker(MA)∩ ker(MC))⊕ ker(MB)⊕V

α = MA(t +u+ v) = MA(u+ v)

β = MB(t +u+ v) = MB(t + v)

γ = MC(t +u+ v) = MC(u+ v)

for v ∈ V ,

1 Compute and sort L = (zi + f (βi(t,v)))t,i

2 for u, look for (f (αi(u,v))+ f (γi(u,v)))u,i in L

Cost of the attack 240
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GEA-2 : IMPROVEMENTS

f

f

f

f

ai

bi

ci

di

zi

D

A

B

C

10 / 44



GEA-2 : GUESS AND DETERMINE

Number of monomials :

1+
4

∑
i=1

(
29
i

)
+

(
31
i

)
+

(
32
i

)
+

(
33
i

)
= 152 682

But 12 800 bits per frame.
Guess nA +nB +nC +nD bits :

1+
4

∑
i=1

(
29−nD

i

)
+

(
31−nA

i

)
+

(
32−nB

i

)
+

(
33−nC

i

)
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GEA-2 : ATTACK

1. Guess nA and nD bits

2. Derive linear equations (⟨mi ,sA+D⟩)1≤i≤n that do not depend on
any bits of A or D (number of monomials < 12800).

3. Apply list-merging to

t = ⟨m1,z⟩⊕⟨m1,sA+D⟩,⟨m2,z⟩⊕⟨m2,sA+D⟩, . . .

and
f1 : β 7→ ⟨m1,sB(β)⟩, . . . ,⟨mc,sB(β)⟩

and
f2 : γ 7→ ⟨m1,sC(γ)⟩, . . . ,⟨mc,sC(γ)⟩
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GEA 1/2 : SUMMARY AND FUTURE WORK

Summary :

▶ GEA-1 attack in 240

▶ GEA-2 attack in 245.1

Improved by :

▶ Amzaleg and Dinur in 2022

▶ Avoine, Carpent, Claverie, Devine and Leblanc-Albarel in 2024
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CRYPTANALYSIS WITH ALGEBRAIC TECHNIQUES

The Subterranean 2.0 Cipher Suite

Daemen, Maat Costa Massolino, Mehrdad and R.

NIST-lwc and ToSC 2020
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SUBTERRANEAN 2.0 : MODE

0257 R

K0

R

N2

R8 R

A0

R

Aia

R

Z0M0

R

ZiMi

R8 R

T0

R

T3

▶ |Kj |= |Nj |= |Aj |= |Mj |= 33 = 32+1 : 32 bits of message, 1 bit
for padding

▶ |Zj |= |Tj |= 32

▶ State size of 257 bits
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SUBTERRANEAN 2.0 : ROUND FUNCTION

s0 . . . s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86 . . . t

π

θ

ι

χ?⊕�
▽◦
�
�� ���?⊕

?⊕

?
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�� ���⊕

64 88 100 112 124 136

PP
PP

P

HH
HH

@
@
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�
��

��
��

��
�

���
�
  

s0 . . . s91 s92 s93 . . . t +1

χ : si ← si +(si+1 +1)si+2

ι : si ← si +δi

θ : si ← si + si+3 + si+8

π : si ← s12i

For j from 0 to 32,
Absorption : s124j ← s124j + xj

For j from 0 to 31,
Extraction : z← z||(s124j + s−124j )
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SUBTERRANEAN 2.0 : ARGUMENTS

0257 R

K0

R

N2

R8 R

A0

R

Aia

R

Z0M0

R

ZiMi

R8 R

T0

R

T3

”Strong” permutation for initialisation and finalisation

, corroborated by :

▶ Liu, Isobe and Meier in 2019 with cubes

▶ El Hirch, Mehrdad, Mella, Grassi, Daemen in 2022 and 2023 for
differential trail search

”Light” permutation in the middle :

▶ Efficiency

▶ Wise choice of bit positions
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SUBTERRANEAN 2.0 : HASHING

R20257

M0

R2

M1

R2

Mi

R8

Z0

R

Z1

R

Z2

R

Z7

▶ |Mj |= 9 = 8+1, 8 bits of message, 1 padding

▶ |Zj |= 32, NIST : 8 output blocks
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SUBTERRANEAN 2.0 : INNER COLLISIONS

▶ Generic attack costs 2c/2 = 2(257−8)/2 = 2124.5

0

⊕
m−i

R
c

⊕
m−2

R s

m−1

⊕
R s0

⊕
m0

random blocks chosen blocks
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SUBTERRANEAN 2.0 : SYSTEM FOR COLLISIONS



q124(s)+q124(s′) = b5s133 +b′5s′133
q125(s)+q125(s′) = b5s135 +b′5s′135
q126(s)+q126(s′) = b5 +b′5 +b2s135 +b′2s′135
q127(s)+q127(s′) = b2s137 +b′2s′137
q128(s)+q128(s′) = b2 +b′2
q129(s)+q129(s′) = b5s133 +b′5s′133
q130(s)+q130(s′) = b5s135 +b′5s′135
q131(s)+q131(s′) = b5 +b′5 +b2s135 +b′2s′135
q132(s)+q132(s′) = b5s133 +b′5s′133 +b2s137 +b′2s′137
q133(s)+q133(s′) = b5s135 +b′5s′135 +b2 +b′2
q134(s)+q134(s′) = b5 +b′5 +b2s135 +b′2s′135
q135(s)+q135(s′) = b2s137 +b′2s′137
q136(s)+q136(s′) = b2 +b′2
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SUBTERRANEAN 2.0 : SUMMARY AND FUTURE WORK

Summary :

▶ Subterranean 2.0: hardware efficiency and still secure

▶ Techniques can be applied to other constructions (e.g. to
KECCAK, Heim Boissier and R in 2020)

On the existence of biases between consecutive blocks :

▶ Unexpected behavior found by Song, Tu, Shi and Hu in 2021

▶ Panther design (Bhargavi, Srinivasan, Lakshmy, 2021), broken
by Boura, Heim Boissier and R. in 2022

▶ Absence proven in Transistor, Baudrin, Belaı̈d, Bon, Boura,
Canteaut, Leurent, Paillier, Perrin, Rivain and R.
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CRYPTANALYSIS WITH ALGEBRAIC TECHNIQUES

Algebraic and Higher-Order Differential Cryptanalysis
of Pyjamask-96

Dobraunig, R. and Schoone

ToSC 2020
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HIGHER-ORDER DERIVATIVES : PRINCIPLE

▶ Dates back to 1994 by Lai and Knudsen

Let f : Fn
2→ F2.

For any linear space V , with dim(V )≥ deg(f )+1,

g : x 7→ ∑
v∈V

f (x + v) = 0

Bounds on the degree :

▶ Trivial Upper bound : deg(F ◦G)≤ deg(F)×deg(G)

▶ Upper bound by Boura, Canteaut and De Cannière in 2011

▶ Lower bounds by Hebborn, Lambin, Leander, Todo in 2020

▶ Division property, many improvements since Todo in 2015
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PYJAMASK (GOUDARZI, JEAN, KÖLBL, PEYRIN,
RIVAIN, SASAKI, SIANG MENG SIM, NIST 2019)

The S-box layer :

▶ 96-bit : quadratic S-box on 3 bits

▶ 128-bit : S-box of degree 3, on 4 bits

The linear layer :

▶ Circulant matrices of size 32 on each row

14 rounds

Round 1 2 3 4 5 6 7 8 9 10
96-bit 2 4 8 16 32 64 80 88 92 94

128-bit 3 9 27 81 112 122 126 127 127 127
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PYJAMASK : 11 ROUNDS DISTINGUISHER

S

▶ Value in blue depends on three key bits (7 monomials)

▶ 7 possible directions and 32 S-boxes

▶ There is 3 possible shifts

▶ Gives (3 ·7−7) ·32 = 448 equations
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PYJAMASK : THE DEVIL IS IN THE DETAILS

294

∑
j=1

S ◦Ak(2) ◦L◦ Ŝ ◦Ak(1) ◦L◦ Ŝ ◦Ak(0)

(
P(j)

)
8

∑
i=1

(
96+128

i

)
≈ 247
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PYJAMASK : THE DEVIL IS IN THE DETAILS

κ := L◦S(K 0)+K 1

π := L◦S(P)

294

∑
j=1

S ◦Ak(2) ◦L◦ Ŝ ◦Ak(1) ◦L◦ Ŝ ◦Ak(0)

(
P(j)

)

= ∑
p∈P

∑
(u,u′,v ,v ′)∈(Fn

2)
4

pu
π

u′kv
κ

v ′

Ntotal Neval Nsolving Nkeybits

7642713 3910569 3829480 154

Cost of the attack : 2114
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PYJAMASK : SUMMARY AND FUTURE WORK

Summary :

▶ Time : 2114

▶ Data : 296

▶ Pyjamask-AEAD : 7 rounds only

Improvements :

▶ Improvements by Cui, Hu, Wang and Wang in 2022

▶ Pass more than one round in the beginning

▶ Key dependency in the distinguisher
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CRYPTANALYSIS OF MODES

Generic Attack on Duplex-Based AEAD Modes
Using Random Function Statistics

Gilbert, Heim Boissier, Khati, R.

EUROCRYPT 2023
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DUPLEX MODE (BERTONI, DAEMEN, PEETERS

AND VAN ASSCHE, 2012)
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DUPLEX MODE : SECURITY

Proven secure

[BDPVA11]

2c/2 2c2c

α

[JLMSY19]

2c

σd

[JLMSY19]

23c/4

[GHKR23]

34 / 44



DUPLEX MODE : SECURITY

Proven secure

[BDPVA11]

2c/2 2c2c

α

[JLMSY19]

2c

σd

[JLMSY19]

23c/4

[GHKR23]

34 / 44



DUPLEX MODE : SECURITY

Proven secure

[BDPVA11]

2c/2 2c2c

α

[JLMSY19]

2c

σd

[JLMSY19]

23c/4

[GHKR23]

34 / 44



DUPLEX MODE : MAIN OBSERVATION

Cℓ
β
= βℓ = β|| · · · ||β︸ ︷︷ ︸

ℓ

:

fβ : Fc
2 −→ Fc

2
x 7−→ ⌊P(β||x)⌋c
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DUPLEX MODE : FORGERY ATTACK

Definition : Exceptional function
An exceptional function f : X → X is said exceptional if its largest
component is big and its cycle is small.

Precomputation : find β such that fβ is exceptional.

Online : (N,A,C,T ) with N,A arbitrary and C = Cℓ
β

with ℓ= λ2
c
2 , with

T computed from cycle points of the function.

Forgery attack in O(2
3c
4 )
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COMPARISON OF KEYED COMPRESSION FUNCTIONS

The serial construction :

The parallel construction :

Security model : the attacker only gets EK ′(h).
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COMPARISON OF KEYED COMPRESSION FUNCTIONS

The relevant security criteria are

▶ The differential uniformity for the serial case :

MDPf = max
a ̸=0,b

DPf (a,b)

▶ The maximum in norm two for the parallel case :

MNDPf =max
a ̸=0

∑
b

DP2
f (a,b)

And
MDPf ≥MNDPf
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KEYED HASHING : SUMMARY AND FUTURE WORK

Summary :

▶ The parallel construction provides better security

▶ Use affine spaces to obtain a quadratic gain

Open question :

▶ How to estimate accurately the MDPf and the MNDPf ?
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Conclusion and Perspectives
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CONCLUSION AND PERSPECTIVES

Cryptanalysis with polynomials :

▶ Collisions, key-recovery and distinguisher

▶ Find more fine-grained information than the degree

▶ Algorithms for analyzing the ANF

▶ What about other polynomial representations?

With a focus on :

▶ Low-data cryptanalysis

▶ For reproductibility of cryptanalysis results

▶ Constrained models such as WPRFs
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